Counting Stable Solutions of Sparse Polynomial Systems
نویسندگان
چکیده
منابع مشابه
Coupled systems of equations with entire and polynomial functions
We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1} A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We derive a priory estimates for the sums of the rootsof the considered system andfor the counting function of roots.
متن کاملRandomization, Sums of Squares, and Faster Real Root Counting for Tetranomials and Beyond
Suppose f is a real univariate polynomial of degree D with exactly 4 monomial terms. We present an algorithm, with complexity polynomial in logD on average (relative to the stable log-uniform measure), for counting the number of real roots of f . The best previous algorithms had complexity super-linear in D. We also discuss connections to sums of squares and A-discriminants, including explicit ...
متن کاملFinding sparse solutions of systems of polynomial equations via group-sparsity optimization
The paper deals with the problem of finding sparse solutions to systems of polynomial equations possibly perturbed by noise. In particular, we show how these solutions can be recovered from group-sparse solutions of a derived system of linear equations. Then, two approaches are considered to find these group-sparse solutions. The first one is based on a convex relaxation resulting in a second-o...
متن کاملCounting Solutions to Polynomial Systems via Reductions
This paper provides both positive and negative results for counting solutions to systems of polynomial equations over a finite field. The general idea is to try to reduce the problem to counting solutions to a single polynomial, where the task is easier. In both cases, simple methods are utilized that we expect will have wider applicability (far beyond algebra). First, we give an efficient dete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000